
‘68’Micro Journal

REPORT FROM JAPAN

Taylor Jackson

Fusjisawa, 251 Japan

In Japan, basic has been around for

several years now, and among hobbists

Tiny basic in one version of another is

probably the most widely used.

Unfortunately there has n’t really been
a good 6800 version around, that is

until recently. ASCII magazine (Japanese)

has recently published two great Tiny

interpreters.

In July ’78 "GAME" was released. This
is an expanded version of vτz with some

interesting bells and whistles (do, until-

for next loops, arrays) it takes up about

l.5K for the interpreter alone. With a

monitor, save-load (load to any address)

and string editor it goes up to about 2. 5K.

The main features of this interpreter are

i t’s speed and stinginess with memory.
(about 20-303, less memory required than
full keyword type interpreters.)

Next in April ’79 NAKAMOZU Tiny Basic
(NTB) was released. This is the first

Tiny interpreter written for a CRT based
system to come out.

The main features common to both GAME and
NTB are:

1. Do until loops

2. For next loops

3. 1 dimension arrays

4. Peak and poke commands

5. Calls to link with machine

language subroutines

6. Decimal and Hex. can be used
freely

7. Real time input

8. They are FAST

Using the bench mark tests from

kilobaud I came up with the following
results:

Test 1 2 3 4 5 皇 7
Game 1.3 3.5 7.5 8.5 10.5 18 23
NTB .8 7.5 14 13 17 26 37
Pittman a 37 61 62 83 280 b c
一 ーTiny

a:no for next loops

b:used counting loop to replace
for-next

c:no arrays

I ran these on a Hitachi 6800 @lMHZ

As you can see the days of making a cup

of coffee between input and response are
gone.

Game is the obvious winner in the speed

race but this is due to using "system

variables" rather than keywords. However

this test doesn’t really give a true
indication of NTB's speed. In actual

applications (longer programs) NTB should

perform much better.

For example in the case of GO TO, or GOSUB,

to a higher line number NTB will begin the
search from the present line rather than

from the beginning.

22

Also searches through the statement and

function tables are very time consuming.

In the case of A=l+B牢C+lO*D, this would

usually require 1 check of the STATEl¥il:ENT

table and 5 checks through the Function

Table. In this type of operation each

table has to be checked to the end.

NTB will caryy out these searches only

when necessary so there should be a noti-

cible gain in speed on longer programs.

(I found it about 2. 5 times faster than

the PALO ALTO Tiny on a friends 8080)

The Do until and For Next loops also
will allow a much cleaner program,giving

a further increase in speed.

Now let's look at the general charac-

teristics.

Interpreter number range type

size

GAME 1.5 K

3 K

2.5 K

r

e

F
回e
H

4
しn

．－
 守，ロU守’つ山

H

q
d

＋

／
／

F
／

Q
U

ロU円，
H

q
L

qu

NTB

Pittman

Tiny " I ’T

Not so much difference in size.
are all well in the Tiny category.

if we look at the instruction sets

them the differences will show up.

They

But

for

Pittman Tiny

Commands Statements Functions Variables

*Clear *End Run A -Z
*List 牢GoTo USR

*Run *GOSUB

*IF THEN

*INPUT

*LET
牢PRINT

*REl¥i1
牢RETURN

single statement per line

NTB

Commands Statements Graphic Statements

*AUτ'O DATE 牢COPYV-RAM topprinter
*APPEND DO *CLR

*DEL UNTIL *CURS

*EXIT END *NEG(Reverse back-

牢LIST FOR－τo ground+display)
牢LOAD NEXT 牢！w(x,y) turn bit xy on

州問 STEP *'B(x,y) 什 " " off
*RUN GO SUB
牢SAVE GOTO

~~

本！R(x,y) reverse bit xy

IF
Graphic Functions

'P(x,y) read bit x,y
LET

INPUT

'68' Micro Journal

POKE
PRINT

REM

off=O

on =l
char=lOO

RESTORE

RET

STOP

THEN

Functions 16Bit Functions Formating

ABS AND USING

GET$ OR TAB

KEY XOR CHR$

MOD IIDF
(PEEK) (4 digit hex)

READ IIDT
RND (2 digit hex)

SGN

USER

multiple statements O.K.

GAME

Commands Statements
O or /n list(from n) A=B Let(not written)

#=l run #=100 Goto 100

&=O new f =100 GoSub 100
&:0)=$FF open file*] ret

&:0)=$FO lock file* /=n user(N)

== search end of file ; =(A=l) IF
=n change program J=2,20 For J=2 to 20

start* address Next J-Step 2 @=J+2

*=n change ram end Do @
#n, old string, new Until A=2 @=(A=2)

string, edit line

Functions

’n Rnd(n)
事（A/B)MOD(A,B)

+n ABS(n)
Not

GAME

Input Output

A=? input A

A=$ input

character

？ぐn)=A outp!-lt least n digits
(leading 0 supressed)

of A

??=A output A (4 digits Hex:

?$=A output least signifi-
gant byte of A

(nex-2 digits)

$=-A output ASCII character

for least signifigant
bit of A

.=A output n spaces

I CR LF
’sτR ING”output quoted string

‘68' Micro Journal

牢programpointers

Cold start

or after new command

r-PROGRAM f J EOF

（＝）＆

After input

When EOF=$FF program can be written into

When EOF $FF program cannot be written into

*Multiple programs may be loaded throughout

available memory or run from programs in ROM

When changing to a new program the starting

address is set by inputting =start address

and the EOF is・ found and set by ==・
The new program is then ready to go this way

multiple programs may be placed throughout

the memory. (no li叫王ageavailable though)

You can see from this that GAME has some
interesting features and NTB supports all

of the PALO ALTO TINY instructions (ab-

breviations are the same also) plus having

many additional features.

The graphic commands in NTB are quite

useful but also graphics and special symbols

may be mixed freely with

This is done by shifing the keyboard into a

"graphic"mode thru software.

At present we are using a cyclic 4 stage

shift; -ASCII JIS (Japanese characters),

Graphic, Control Code. (no control cpde on

our pocket keyboard). This, of course, can

be easily rewritten to meet your own needs.
In the graphic mode the lower 4 bits are

output directly to the screen as

I~二~：：－－b_O_ ！→明
」 ι4i

恒三j
This allows interesting graphics to be

mixed with text.
The video ram we are using at present is

very similar to the τ'RS-80 video board, and

allows this type of limited graphics.

The graphic commands will have to be adapted

to your own video board but this should be
easy to accomplish.

I/O Routines

Both GAME and NTB are using MIKBUG type
I/O. The I/O parameters are handled in ACCA.

The other registers should be preserved.

They can be run on a teletype but NTB should

really be run on a video systetn capable of
graphics, to utilize it fully.

3

Software for GAME

GAME

Save Load Routine

This routine will allow you to load

GAME programs into any open area in

the available memory.

Assembler

A 2 pass assembler written in GAME
Di assembler

To list GAME programs into a more

readable form e.g. #=100 becomes
GO TO 100

String Editor

Rather than retype a whole line

the editor will replace all occurances

of the old string with the new one in
the line.

Also GAME 3.6 is out now. This is a
4 K. Graphic Version of GAME. It has the

same instruction set as GAME. and

features 34 graphic commands. However the
graphic section was written for The Hitachi

6800 micro and video board. So, a lot of

rewriting would be necessary to get it up
and running.

In the near future ASCII plans to
release a GAME compiler and a NTB compiler.

(GAME 8080 is out in compiler form now so

the 6800 version should follow soon.)

Also a screen editor for NTB has been

promised. I’11 let you know about them
as they are released.

26

Fast ・・rviceand Feedback, al例ost unheard of in th！・
”。d・Fn world.

'68’Micro Journal

